
Central limit theorem: If the sample size is large enough, then the sampling

distribution for the mean is (approximately) normal. Specifically

x ∼ N
(
µ,

σ√
n

)
,

where µ is the population mean and σ is the population standard deviation.

Implication: If the sample size n is big enough and x is the mean of a simple

random sample, then

(*) P (−E < x− µ < E) = P

(
− E

σ/
√
n
< z <

E

σ/
√
n

)
;

(*) If Eα = zα/2 ·
σ√
n

, then
Eα
σ/
√
n

= zα/2 and

P (−Eα < x− µ < Eα) = P (−zα/2 < z < zα/2) = 1− α.

Conclusion: If the population standard deviation σ is known, then

x± Eα = (x− Eα, x+ Eα)

is a (1− α)× 100% confidence interval for µ. E.g.,

α = 0.05 =⇒ 95%-confidence and α = 0.01 =⇒ 99%-confidence
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Comments:

(i) If the original population has a normal distribution, then

x ∼ N
(
µ,

σ√
n

)
for any sample size n.

(ii) If the original population has a distribution which is ‘normal-like’

(one mode, symmetric, no outliers), then n > 30 is typically large enough

(rule-of-thumb).

(iii) If the original population has a distribution that is far from normal,

then the sample size might need to be considerably larger for the methods

we use here to be reliable.
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Example. A (simple random) sample of n = 54 bears. The lengths

of their heads were recorded (in inches). Construct a 95% confidence

interval for the mean length of bears heads in the population.

(*) x = 12.954

(*) Population standard deviation: σ = 2.152.

(*) Data appears to come from a normal-like distribution:

(*) Margin of error: E0.05 = z0.025 · σ√
n

= 1.96 · 2.152√
54
≈ 0.574

(*) Confidence interval: x± Eα = 12.954± 0.574 = (12.38, 13.528).
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More complete JMP output:

(*) The reported standard deviation is the sample SD s ≈ 2.144.

(*)
s√
n

(or
σ√
n

) is called the standard error for the mean (SE).

(*) The reported SE is smaller than the one we calculated (because

σ < s)...

(*) ... But the reported confidence interval (12.368, 13.539) is wider

than the one we calculated..?

4



Central limit theorem, again: If the sample size is large enough,

then the sampling distribution for the mean is (approximately) normal.

Specifically

x ∼ N
(
µ,

σ√
n

)
=⇒ x− µ

σ
∼ N(0, 1),

where µ is the population mean and σ is the population standard devia-

tion.

(*) If the population standard deviation (σ) is not known (the usual

case!), we use sample standard deviation (s) instead.

(*) Complication:
x− µ
s/
√
n

does not follow N(0, 1).

(*) Resolution:
x− µ
s/
√
n

does follow Student’s t-distribution, with n− 1

degrees of freedom.
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(*) There is a separate t-distribution for each number of degrees of

freedom (d.f.)

(*) All t-distributions are ‘bell-shaped’, but shorter than and with thicker

tails than N(0, 1).

-4 -3 -2 -1 0 1 2 3 4

Normal (∞ d.f.)

8 d.f.

4 d.f.

2 d.f.

(*) As d.f.→∞, the t-distribution approaches N(0, 1).

Conclusion: If n > 30 or the population has a normal distribution,

then
x− µ
s/
√
n

follows the t-distribution, with n− 1 degrees of freedom.
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(*) The t-table is arranged to make it easy to find critical values for

specific areas under the curve for (many) different d.f.
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(*) Same principle as before: the critical value tα (m d.f.) is the number

such that the area in one tail is

P (t > tα) = α

This also means that the area between the two tails is

P (−tα < t < tα) = 1− 2α.

t!

!

-t!

1-2!

For example, if m = 25 and α = 0.025, then tα = 2.060

8



(*) If Eα = tα/2 · s√
n

, then

P (|x− µ| < Eα) = P

(∣∣∣∣x− µs/
√
n

∣∣∣∣ < tα/2

)
= 1− α

I.e., if α = 0.025, then

x± E0.05 = x± t0.025 ·
s√
n

is a 95% confidence interval for the population mean µ.
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Example. 95% Confidence interval for bear head length.

(*) x = 12.954, s = 2.144, n = 54.

(*) n = 54 =⇒ d.f. = 54− 1 = 53.

(*) t0.025 ≈ 2.006 (3/5 of the way from 50 d.f. to 55 d.f.)

(*) E0.05 = t0.025 · s√
n
≈ 2.006 · 2.144√

54
≈ 0.585

(*) 95% confidence interval:

x± E0.05 = 12.954± 0.585 = (12.369, 13.539).
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