A multiple linear regression that describes the variation in the variable y in terms of the k (explanatory) variables x_1, x_2, \ldots, x_k has the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon.$$

- $\beta_0, \beta_1, \ldots, \beta_k$ are population parameters.
- Assumptions about the model include
 - (i) The error ε has a normal distribution with mean 0 for each fixed set of values $x_1 = \xi_1, x_2 = \xi_2, \dots, x_k = \xi_k$.
 - (ii) The error is independent of the x_j s, so the standard deviation of ε is fixed. I.e., $\varepsilon \sim N(0, \sigma^2)$. (Homoskedasticity)
- These assumptions imply that

$$E(y|x_1 = \xi_1, x_2 = \xi_2, \dots, x_k = \xi_k) = \beta_0 + \beta_1 \xi_1 + \beta_2 \xi_2 + \dots + \beta_k \xi_k,$$

where $E(y|x_1 = \xi_1, x_2 = \xi_2, \dots, x_k = \xi_k)$ is the expected (mean) y value for all observations satisfying $x_1 = \xi_1, x_2 = \xi_2, \dots, x_k = \xi_k$.

Using sample data, we compute the estimated regression equation

$$\hat{y}_i = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k.$$

• The sample coefficients b_0, b_1, \ldots, b_k are sample statistics (that estimate the population coefficients β_0, \ldots, β_k). As such, b_0, \ldots, b_k are all random variables, and the assumptions above imply that they all have *normal* distributions. In particular...

... for each i between 0 and k:

$$\frac{b_i - \beta_i}{SE(b_i)} \sim t$$
-distribution, with $n - (k+1) d.f.$

We can use this to test individual coefficients for statistical significance:

$$H_0: \beta_i = 0$$
 vs. $H_a: \beta_i \neq 0.$

Rejecting H_0 means that there is significant linear correlation between x_i and y, and b_i is a reliable measure of the marginal change in y for a one-unit change in x_i , assuming that all other variables are held fixed. We can also test the *overall significance* of the regression:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 $H_a: \beta_j \neq 0$, for at least one j between 1 and k.

The test statistic is

$$F^* = \frac{MSS_m}{MSS_e} = \frac{(\sum(\hat{y}_i - \overline{y})^2)/k}{(\sum(y_i - \hat{y}_i)^2)/(n - k + 1)}$$

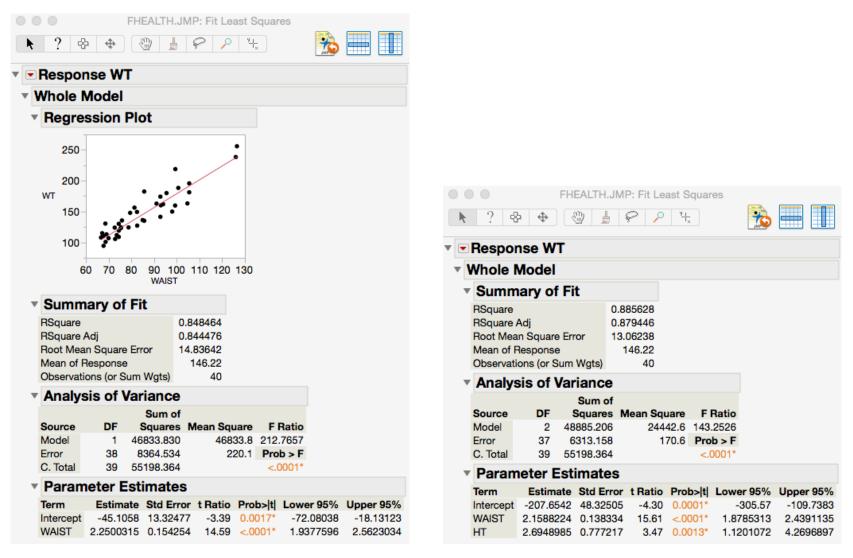
which follows the F-distribution with k numerator d.f. and n-k+1 denominator d.f.

 H_0 is rejected at the α level of significance if $F^* > F_{\alpha}$ (the critical *F*-value). Alternatively, reject H_0 if the *P*-value, $Prob(F > F^*)$, is smaller than α .

Comments:

- 1. For a simple regression $\overline{y}(x) = \beta_0 + \beta_1 x$, testing $H_0: \beta_1 = 0$ (t-test) yields the same conclusion as the F-test for overall significance.
- 2. Most software packages (including JMP) compute the *t*-scores for all of the regression coefficients and their *p*-values, as well as the *F*-score of overall significance and its *p*-value.
- 3. One can also test other hypotheses about individual coefficients, e.g.,

$$H_0: \beta_3 = 2 \text{ vs. } H_a: \beta_3 < 2.$$


With this null hypothesis,

$$\frac{b_3-2}{SE(b_3)} \sim t$$
-distribution, with $n - (k+1) d.f.$,

and the mechanics of the test are the same as any other t-test.

Example: Estimating weight with a measuring tape.

Response variable: weight (lbs). Effect variables: waist circumfrence (cm), height (inches), age (years), arm circumfrence (cm).

► ? €			P /		ares	%		k	? 4		00	.JMP: Fit L	east So	quares		
Responsible	nse WT							• •	Respor	nse W1	Г					
Whole I	Model							-	Nhole N	Nodel						
Summary of Fit									Summ		Ei+					
RSquare Adj 0.879 Root Mean Square Error 13.0		0.888886 0.879626 13.0526 146.22 40	6 6 2					RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)		0.934142 0.928654 10.04885 146.22 s) 40						
 Analysis of Variance 								Analys	sis of V	/arianc	е					
Source Model Error	DF Sc 3 490 36 61	65.035 33.329		355.0 9 70.4 P	F Ratio 95.9969 rob > F				Source Model Error	DF 3	Sum	of es Mean S 03 17	187.7	F Ratio 170.2098 Prob > F		
C. Total		98.364		•	<.0001*				C. Total	39	55198.36	64		<.0001*		
 Param 	neter Estin							•	Param	neter E	stimat	es				
Term Intercept WAIST HT AGE		48.3395).18261).77667	6 -4.34 1 12.49 7 3.46	0.0001 <.0001 0.0014	-307 1.911 1.111	r 95% 7.9658 10662 13492 82158	Upper 95% -111.8915 2.6517691 4.2616984 0.2234156		Term Intercept WAIST HT ARM	-278.45 1.057 3.6014	ate Std E 36 39.63 52 0.238 71 0.623 21 0.689	704 -7.0 874 4.4 289 5.7	3 <.00 3 <.00 8 <.00	01* -35 01* 0.5 01* 2.3	er 95% 58.8413 730619 373827 538359	Upper 95% -198.066 1.5419781 4.8655593 4.9525283