A multiple linear regression that describes the variation in the variable y in terms of the k (explanatory) variables $x_{1}, x_{2}, \ldots, x_{k}$ has the form

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\varepsilon
$$

- $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ are population parameters.
- Assumptions about the model include
(i) The error ε has a normal distribution with mean 0 for each fixed set of values $x_{1}=\xi_{1}, x_{2}=\xi_{2}, \ldots, x_{k}=\xi_{k}$.
(ii) The error is independent of the $x_{j} \mathrm{~s}$, so the standard deviation of ε is fixed. I.e., $\varepsilon \sim N\left(0, \sigma^{2}\right)$. (Homoskedasticity)
- These assumptions imply that
$E\left(y \mid x_{1}=\xi_{1}, x_{2}=\xi_{2}, \ldots, x_{k}=\xi_{k}\right)=\beta_{0}+\beta_{1} \xi_{1}+\beta_{2} \xi_{2}+\cdots+\beta_{k} \xi_{k}$,
where $E\left(y \mid x_{1}=\xi_{1}, x_{2}=\xi_{2}, \ldots, x_{k}=\xi_{k}\right)$ is the expected (mean) y value for all observations satisfying $x_{1}=\xi_{1}, x_{2}=\xi_{2}, \ldots, x_{k}=\xi_{k}$.

Using sample data, we compute the estimated regression equation

$$
\hat{y}_{i}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}
$$

- The sample coefficients $b_{0}, b_{1}, \ldots, b_{k}$ are sample statistics (that estimate the population coefficients $\beta_{0}, \ldots, \beta_{k}$). As such, $b_{0}, \ldots b_{k}$ are all random variables, and the assumptions above imply that they all have normal distributions. In particular...
\ldots for each i between 0 and k :

$$
\frac{b_{i}-\beta_{i}}{S E\left(b_{i}\right)} \sim t \text {-distribution, with } n-(k+1) d . f \text {. }
$$

We can use this to test individual coefficients for statistical significance:

$$
H_{0}: \beta_{i}=0 \quad \text { vs. } \quad H_{a}: \beta_{i} \neq 0
$$

Rejecting H_{0} means that there is significant linear correlation between x_{i} and y, and b_{i} is a reliable measure of the marginal change in y for a one-unit change in x_{i}, assuming that all other variables are held fixed.

We can also test the overall significance of the regression:
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$
$H_{a}: \beta_{j} \neq 0$, for at least one j between 1 and k.
The test statistic is

$$
F^{*}=\frac{M S S_{m}}{M S S_{e}}=\frac{\left(\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}\right) / k}{\left(\sum\left(y_{i}-\hat{y}_{i}\right)^{2}\right) /(n-k+1)}
$$

which follows the \boldsymbol{F}-distribution with k numerator d.f. and $n-k+1$ denominator d.f.
H_{0} is rejected at the α level of significance if $F^{*}>F_{\alpha}$ (the critical F-value). Alternatively, reject H_{0} if the P-value, $\operatorname{Prob}\left(F>F^{*}\right)$, is smaller than α.

Comments:

1. For a simple regression $\bar{y}(x)=\beta_{0}+\beta_{1} x$, testing $H_{0}: \beta_{1}=0$ (t-test) yields the same conclusion as the F-test for overall significance.
2. Most software packages (including JMP) compute the t-scores for all of the regression coefficients and their p-values, as well as the F-score of overall significance and its p-value.
3. One can also test other hypotheses about individual coefficients, e.g.,

$$
H_{0}: \beta_{3}=2 \text { vs. } H_{a}: \beta_{3}<2
$$

With this null hypothesis,

$$
\frac{b_{3}-2}{S E\left(b_{3}\right)} \sim t \text {-distribution, with } n-(k+1) d . f .,
$$

and the mechanics of the test are the same as any other t-test.

Example: Estimating weight with a measuring tape.
Response variable: weight (lbs). Effect variables: waist circumfrence (cm), height (inches), age (years), arm circumfrence (cm).

- Response WT
- Whole Model
- Regression Plot

Summary of Fit				
RSquare			0.848464	
RSquare Adj			0.844476	
Root Mean Square Error			14.83642	
Mean of Response			146.22	
Observations (or Sum Wgts)			40	
- Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	46833.830	46833.8	212.7657
Error	38	8364.534	220.1	Prob > F
C. Total	39	55198.364		<.0001*

- Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| Lower 95\% Upper 95\% $\begin{array}{llllllll}\text { Intercept } & -45.1058 & 13.32477 & -3.39 & 0.0017^{*} & -72.08038 & -18.13123\end{array}$ $\begin{array}{llllllll}\text { WAIST } & 2.2500315 & 0.154254 & 14.59 & <.0001^{*} & 1.9377596 & 2.5623034\end{array}$

- FHEALTH.JMP: Fit Least Squares

- Response WT
- Whole Model
- Summary of Fit

RSquare
RSquare Adj
0.888886
0.879626

Mean of Response
13.0526
146.22

Observations (or Sum Wgts)
40

- Analysis of Variance

| | $\begin{array}{c}\text { Sum of } \\ \text { Source }\end{array}$ | | | | DF |
| :--- | ---: | ---: | ---: | ---: | ---: |$\quad \begin{array}{l}\text { Squares }\end{array}$ Mean Square $)$ F Ratio

- Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| Lower 95\% Upper 95\% Intercept -209.9287 48.33956 -4.34 0.0001* -307.9658 -111.8915 $\begin{array}{llllllll}\text { WAIST } & 2.2814176 & 0.182611 & 12.49 & <.0001^{*} & 1.9110662 & 2.6517691\end{array}$ $\begin{array}{lllllll}\text { HT } & 2.6865238 & 0.776677 & 3.46 & 0.0014^{*} & 1.1113492 & 4.2616984\end{array}$ $\begin{array}{lllllll}\text { AGE } & -0.229371 & 0.223257 & -1.03 & 0.3111 & -0.682158 & 0.2234156\end{array}$

- Whole Model
- Summary of Fit
RSquare 0.934142
RSquare Adj 0.928654

Root Mean Square Error 10.04885
Mean of Response 146.22
Observations (or Sum Wgts)
40

- Analysis of Variance

	Sum of				
Source	DF	Squares	Mean Square	F Ratio	
Model	3	51563.103	17187.7	170.2098	
Error	36	3635.261	101.0	Prob $>$ F	
C. Total	39	55198.364		$<.0001^{*}$	

- Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>\|\boldsymbol{t}\|$	Lower 95\%	Upper 95\%
Intercept	-278.4536	39.63704	-7.03	$<.0001^{*}$	-358.8413	-198.066
WAIST	1.05752	0.238874	4.43	$<.0001^{*}$	0.5730619	1.5419781
HT	3.601471	0.623289	5.78	$<.0001^{*}$	2.3373827	4.8655593
ARM	3.5531821	0.689981	5.15	$<.0001^{*}$	2.1538359	4.9525283

