Probability theory is the mathematical field concerned with quan-

tifying the likelthood of uncertain events.

The probability of an event is a number between 0 and 1.

The closer the number is to 1, the more certain we are that the

event will occur.

The closer the number is to 0, the more certain we are that the

event will not occur.

Events whose probabilities are close to 1/2 are those about

which we are the most uncertain.

The probability of an event depends on what we know (or
assume). As the information changes, so can the probability.




The frequentist definition

The probability of an event is the relative frequency with which
the event will 1s observed if the same set of circumstances are
repeated a large number of times. I.e., if the event E is observed
k times in n repetitions, then the probability of E, denoted by
P(E), is k/n.

The classical definition

If a process has n equally likely outcomes and the event E
comprises k of these outcomes, then P(E) = k/n.

The frequentist and classical definitions are connected by...
The law of large numbers
If P(FE) is the (classical) probability of the event E, then as the

number n of (independent) repetitions of the process grows large,
the relative frequency with which E is observed gets closer and

closer to P(F) (almost certainly).




Example.

Suppose that a fair coin is tossed three times. The (eight) possible

outcomes are
HHH HHT HTH,THH, TTH THT HTT, TTT

Unless we have information to the contrary, the only reasonable assump-

tion is that these eight outcomes are equally likelyl?|

If E is the event “exactly two H are observed in three tosses”, then E is
comprised of the outcomes HHT', HI'H and T'THH, so

P(E)

The law of large numbers says in this case that if the process of tossing a

# of outcomes in & 3

~ ‘total # of outcomes 8

coin three times is repeated a large number of times, then 2t is almost
certain that the relative frequency of the event F (two H and one T) in

this large number of repetitions will be very close to 3/8.

2 An instance of Laplace’s principle of insufficient reason.




Conditional probability

(*) The probability of an event depends on what we know (or assume).

As the information changes, so can the probability.

(*) Suppose that E and F' are two related events. The conditional
probability of E given I, written P(FE|F’), is the probability of observing

event I/, assuming that event F' has been observed.

(*) If we know that the event F' has occurred, then the set of possible

outcomes has changed to include only those which occur in F'.

(*) If P(E|F) = P(F), i.e., if observing the event F' does not change the
probability of the event E, then we say that E and F' are statistically

independent (or just independent, for short).




Example. Returning to the three coin tosses, suppose that F'is the event
“The first coin flip results in H”, and E is as before (2H and 17T). If we
know that F' has occurred, then the set of possible outcomes is reduced
to HHH, HHT, HI'H and HTT. Two of these four outcomes result in

E, so
P(E|F) = # of outcomes in E.and in F _ 2 _1
# of outcomes in F 4 2

Similarly, if we know that E has occurred, then the conditional probability

of F' given F is

# of outcomes in £ and in ' 2
P(F|\E) = = —
(FIE) % of outcomes in E 3’

which is different (bigger) than the unconditional (or prior) probability of
F,

P(F) = # of outcomes in F¥ 4 1
~ total # of outcomes 8 2’

Looking at either case, we see that FF and F' are dependent (not indepen-
dent).




Rules for calculating probabilities.

1. If the event F is certain not to occur, then P(F) = 0; if the event F
is certain to occur, then P(E) =1 and in any case 0 < P(F) < 1.

. The conditional probability of E given F'is calculated as follows:

P(E and F)
P(F)

where “E and F” is the event where both E and F' occur. Likewise,

P(E|F) =

P(FE and F)

P(E|F) =

P(E)
In many cases, the conditional probability is known, and we use the
formula(s) above to find the probability of “E and F”:

P(E and F) = P(E) - P(F|E) = P(F) - P(E|F).

This is called the multiplication rule. In the special case where E and

F' are independent, the multiplication rule gives

P(E and F) = P(E)P(F).




3. The probability of “E or F” is given by
P(Eor F)=P(FE)+ P(F)— P(E and F).
This is called the addition rule.

If P(E and F') = 0, the events F and F are called mutually exclusive.
If £ and F' are mutually exclusive, then the addition rule simplifies

to
P(E or F)= P(F)+ P(F).

The event “E does not occur” (called the complement of F) is denoted
by E. Since it is certain that E either occurs or does not, and since

E and E are mutually exclusive, the addition rules says

P(E)+ P(E)=P(Eor E) =1

which we often use to find P(F) =— P(F) =1— P(FE).




(*) More generally if A and E are any events, then first of all,

A= (Aand E) or (A and E)

and second, the events (A and E) and (A and E) are mutually ex-

clusive, so

P(A) = P(A and E) + P(A and E).
Combining this with the multiplication rule we have the useful formula

P(A) = P(E)P(A|E) + P(E)P(A|E).

. Bayes’ rule. Suppose that we know P(B|A), how can we find
P(A|B)? This question arises in situations where the natural sequence
of events is first A, then B. In these situations we often know (or
think we know) the prior (unconditional) probability P(A), as well

as the conditional probabilities P(B|A) and P(B|A). If all of this is
known, then

P(A|B) = P(AP?]I;; B) _




Example. Suppose that a test for a certain dread disease (dd) has a
probability of 0.02 of returning a false positive and a probability of 0.001
of returning a false negative. Furthermore, suppose that it is known that
1% of the population is infected with dd.

Question: If a random individual tests positive for dd, what is the
probability that he or she is actually infected?

Answer: First, some notation. I'll use D to denote the event that the
individual is infected with dd and T" for the event that the individual tests
positive for dd.

What we know is (i) P(D) = 0.01 (probability that a randomly individual
is infected), (ii) P(T|D) = 0.02 (probability of a false positive) and (iii)
P(T|D) = 0.001 (probability of a false negative). What we want to know
is P(D|T'), and we can use Bayes’ rule to find it.

First, P(D) = 1 — P(D) = 0.99. Likewise

P(T|D) =1— P(T|D) =1 —0.001 = 0.999

(conditional probabilities behave exactly like unconditional probabilities).




Now we can simply plug everything into Bayes’ formula

P(T and D)
P(T)
P(D)P(TID)
P(D)P(T|D) + P(D)P(T|D)

P(D|T) =

) +
B (0.01)(0.999) ~0.00999
~ (0.01)(0.999) + (0.99)(0.02)  0.02979

~ 0.335.

Conclusion: Even though there is a very low probability of a false
positive, a positive test result indicates an infected person in only about
1 out of 3 cases. This may appear contradictory at first, but you have
to remember that a false positive is the conditional event “positive result
given no infection” (T|D), while the event whose probability we just

calculated is “infection given positive test” (D|T).

In this example the probability P(D|T) is relatively low because of the
prior probability P(D) = 0.01. Most people are not infected, so even
though very few of them test positive, almost two thirds of all positive

results (in this hypothetical example) are false positives.




