
Probability theory is the mathematical field concerned with quan-

tifying the likelihood of uncertain events.

• The probability of an event is a number between 0 and 1.

• The closer the number is to 1, the more certain we are that the

event will occur.

• The closer the number is to 0, the more certain we are that the

event will not occur.

• Events whose probabilities are close to 1/2 are those about

which we are the most uncertain.

• The probability of an event depends on what we know (or

assume). As the information changes, so can the probability.
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The frequentist definition

The probability of an event is the relative frequency with which

the event will is observed if the same set of circumstances are

repeated a large number of times. I.e., if the event E is observed

k times in n repetitions, then the probability of E, denoted by

P (E), is k/n.

The classical definition

If a process has n equally likely outcomes and the event E

comprises k of these outcomes, then P (E) = k/n.

The frequentist and classical definitions are connected by...

The law of large numbers

If P (E) is the (classical) probability of the event E, then as the

number n of (independent) repetitions of the process grows large,

the relative frequency with which E is observed gets closer and

closer to P (E) (almost certainly).
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Example.

Suppose that a fair coin is tossed three times. The (eight) possible

outcomes are

HHH,HHT,HTH, THH, TTH, THT,HTT, TTT

Unless we have information to the contrary, the only reasonable assump-

tion is that these eight outcomes are equally likely.a

If E is the event “exactly two H are observed in three tosses”, then E is

comprised of the outcomes HHT, HTH and THH, so

P (E) =
# of outcomes in E

total # of outcomes
=

3

8
.

The law of large numbers says in this case that if the process of tossing a

coin three times is repeated a large number of times, then it is almost

certain that the relative frequency of the event E (two H and one T ) in

this large number of repetitions will be very close to 3/8.

aAn instance of Laplace’s principle of insufficient reason.
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Conditional probability

(*) The probability of an event depends on what we know (or assume).

As the information changes, so can the probability.

(*) Suppose that E and F are two related events. The conditional

probability of E given F , written P (E|F ), is the probability of observing

event E, assuming that event F has been observed.

(*) If we know that the event F has occurred, then the set of possible

outcomes has changed to include only those which occur in F .

(*) If P (E|F ) = P (E), i.e., if observing the event F does not change the

probability of the event E, then we say that E and F are statistically

independent (or just independent, for short).
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Example. Returning to the three coin tosses, suppose that F is the event

“The first coin flip results in H”, and E is as before (2H and 1T ). If we

know that F has occurred, then the set of possible outcomes is reduced

to HHH,HHT,HTH and HTT . Two of these four outcomes result in

E, so

P (E|F ) =
# of outcomes in E and in F

# of outcomes in F
=

2

4
=

1

2
.

Similarly, if we know that E has occurred, then the conditional probability

of F given E is

P (F |E) =
# of outcomes in E and in F

% of outcomes in E
=

2

3
,

which is different (bigger) than the unconditional (or prior) probability of

F ,

P (F ) =
# of outcomes in F

total # of outcomes
=

4

8
=

1

2
.

Looking at either case, we see that E and F are dependent (not indepen-

dent).
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Rules for calculating probabilities.

1. If the event E is certain not to occur, then P (E) = 0; if the event E

is certain to occur, then P (E) = 1 and in any case 0 ≤ P (E) ≤ 1.

2. The conditional probability of E given F is calculated as follows:

P (E|F ) =
P (E and F )

P (F )
,

where “E and F” is the event where both E and F occur. Likewise,

P (E|F ) =
P (E and F )

P (E)
.

In many cases, the conditional probability is known, and we use the

formula(s) above to find the probability of “E and F”:

P (E and F ) = P (E) · P (F |E) = P (F ) · P (E|F ).

This is called the multiplication rule. In the special case where E and

F are independent, the multiplication rule gives

P (E and F ) = P (E)P (F ).
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3. The probability of “E or F” is given by

P (E or F ) = P (E) + P (F )− P (E and F ).

This is called the addition rule.

(*) If P (E and F ) = 0, the events E and F are called mutually exclusive.

If E and F are mutually exclusive, then the addition rule simplifies

to

P (E or F ) = P (E) + P (F ).

(*) The event “E does not occur” (called the complement of E) is denoted

by E. Since it is certain that E either occurs or does not, and since

E and E are mutually exclusive, the addition rules says

P (E) + P (E) = P (E or E) = 1

which we often use to find P (E) =⇒ P (E) = 1− P (E).
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(*) More generally if A and E are any events, then first of all,

A = (A and E) or (A and E)

and second, the events (A and E) and (A and E) are mutually ex-

clusive, so

P (A) = P (A and E) + P (A and E).

Combining this with the multiplication rule we have the useful formula

P (A) = P (E)P (A|E) + P (E)P (A|E).

4. Bayes’ rule. Suppose that we know P (B|A), how can we find

P (A|B)? This question arises in situations where the natural sequence

of events is first A, then B. In these situations we often know (or

think we know) the prior (unconditional) probability P (A), as well

as the conditional probabilities P (B|A) and P (B|A). If all of this is

known, then

P (A|B) =
P (A and B)

P (B)
=

P (A)P (B|A)

P (A)P (B|A) + P (A)P (B|A)
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Example. Suppose that a test for a certain dread disease (dd) has a

probability of 0.02 of returning a false positive and a probability of 0.001

of returning a false negative. Furthermore, suppose that it is known that

1% of the population is infected with dd.

Question: If a random individual tests positive for dd, what is the

probability that he or she is actually infected?

Answer: First, some notation. I’ll use D to denote the event that the

individual is infected with dd and T for the event that the individual tests

positive for dd.

What we know is (i) P (D) = 0.01 (probability that a randomly individual

is infected), (ii) P (T |D) = 0.02 (probability of a false positive) and (iii)

P (T |D) = 0.001 (probability of a false negative). What we want to know

is P (D|T ), and we can use Bayes’ rule to find it.

First, P (D) = 1− P (D) = 0.99. Likewise

P (T |D) = 1− P (T |D) = 1− 0.001 = 0.999

(conditional probabilities behave exactly like unconditional probabilities).
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Now we can simply plug everything into Bayes’ formula

P (D|T ) =
P (T and D)

P (T )

=
P (D)P (T |D)

P (D)P (T |D) + P (D)P (T |D)

=
(0.01)(0.999)

(0.01)(0.999) + (0.99)(0.02)
=

0.00999

0.02979
≈ 0.335.

Conclusion: Even though there is a very low probability of a false

positive, a positive test result indicates an infected person in only about

1 out of 3 cases. This may appear contradictory at first, but you have

to remember that a false positive is the conditional event “positive result

given no infection” (T |D), while the event whose probability we just

calculated is “infection given positive test” (D|T ).

In this example the probability P (D|T ) is relatively low because of the

prior probability P (D) = 0.01. Most people are not infected, so even

though very few of them test positive, almost two thirds of all positive

results (in this hypothetical example) are false positives.
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