Probability theory is the mathematical field concerned with quantifying the likelihood of uncertain events.

- The probability of an event is a number between 0 and 1 .
- The closer the number is to 1 , the more certain we are that the event will occur.
- The closer the number is to 0 , the more certain we are that the event will not occur.
- Events whose probabilities are close to $1 / 2$ are those about which we are the most uncertain.
- The probability of an event depends on what we know (or assume). As the information changes, so can the probability.


## The frequentist definition

The probability of an event is the relative frequency with which the event will is observed if the same set of circumstances are repeated a large number of times. I.e., if the event $E$ is observed $k$ times in $n$ repetitions, then the probability of $E$, denoted by $P(E)$, is $k / n$.

## The classical definition

If a process has n equally likely outcomes and the event $E$ comprises $k$ of these outcomes, then $P(E)=k / n$.

The frequentist and classical definitions are connected by... The law of large numbers

If $P(E)$ is the (classical) probability of the event $E$, then as the number $n$ of (independent) repetitions of the process grows large, the relative frequency with which $E$ is observed gets closer and closer to $P(E)$ (almost certainly).

## Example.

Suppose that a fair coin is tossed three times. The (eight) possible outcomes are

$$
H H H, H H T, H T H, T H H, T T H, T H T, H T T, T T T
$$

Unless we have information to the contrary, the only reasonable assumption is that these eight outcomes are equally likely ${ }^{\text {a }}$

If $E$ is the event "exactly two $H$ are observed in three tosses", then $E$ is comprised of the outcomes HHT, HTH and THH, so

$$
P(E)=\frac{\# \text { of outcomes in } E}{\text { total \# of outcomes }}=\frac{3}{8} .
$$

The law of large numbers says in this case that if the process of tossing a coin three times is repeated a large number of times, then it is almost certain that the relative frequency of the event $E$ (two $H$ and one $T$ ) in this large number of repetitions will be very close to $3 / 8$.

[^0]
## Conditional probability

$\left.{ }^{*}\right)$ The probability of an event depends on what we know (or assume).
As the information changes, so can the probability.
(*) Suppose that $E$ and $F$ are two related events. The conditional probability of $E$ given $F$, written $P(E \mid F)$, is the probability of observing event $E$, assuming that event $F$ has been observed.
$\left.{ }^{*}\right)$ If we know that the event $F$ has occurred, then the set of possible outcomes has changed to include only those which occur in $F$.
$\left.{ }^{*}\right)$ If $P(E \mid F)=P(E)$, i.e., if observing the event $F$ does not change the probability of the event $E$, then we say that $E$ and $F$ are statistically independent (or just independent, for short).

Example. Returning to the three coin tosses, suppose that $F$ is the event "The first coin flip results in $H$ ", and $E$ is as before $(2 H$ and $1 T)$. If we know that $F$ has occurred, then the set of possible outcomes is reduced to $H H H, H H T, H T H$ and $H T T$. Two of these four outcomes result in E, so

$$
P(E \mid F)=\frac{\# \text { of outcomes in } E \text { and in } F}{\# \text { of outcomes in } F}=\frac{2}{4}=\frac{1}{2} .
$$

Similarly, if we know that $E$ has occurred, then the conditional probability of $F$ given $E$ is

$$
P(F \mid E)=\frac{\# \text { of outcomes in } E \text { and in } F}{\% \text { of outcomes in } E}=\frac{2}{3}
$$

which is different (bigger) than the unconditional (or prior) probability of $F$,

$$
P(F)=\frac{\# \text { of outcomes in } F}{\text { total \# of outcomes }}=\frac{4}{8}=\frac{1}{2}
$$

Looking at either case, we see that $E$ and $F$ are dependent (not independent).

## Rules for calculating probabilities.

1. If the event $E$ is certain not to occur, then $P(E)=0$; if the event $E$ is certain to occur, then $P(E)=1$ and in any case $0 \leq P(E) \leq 1$.
2. The conditional probability of $E$ given $F$ is calculated as follows:

$$
P(E \mid F)=\frac{P(E \text { and } F)}{P(F)},
$$

where " $E$ and $F$ " is the event where both $E$ and $F$ occur. Likewise,

$$
P(E \mid F)=\frac{P(E \text { and } F)}{P(E)}
$$

In many cases, the conditional probability is known, and we use the formula(s) above to find the probability of " $E$ and $F$ ":

$$
P(E \text { and } F)=P(E) \cdot P(F \mid E)=P(F) \cdot P(E \mid F)
$$

This is called the multiplication rule. In the special case where $E$ and $F$ are independent, the multiplication rule gives

$$
P(E \text { and } F)=P(E) P(F)
$$

3. The probability of " $E$ or $F$ " is given by

$$
P(E \text { or } F)=P(E)+P(F)-P(E \text { and } F)
$$

This is called the addition rule.
$\left.{ }^{*}\right)$ If $P(E$ and $F)=0$, the events $E$ and $F$ are called mutually exclusive. If $E$ and $F$ are mutually exclusive, then the addition rule simplifies to

$$
P(E \text { or } F)=P(E)+P(F)
$$

(*) The event "E does not occur" (called the complement of $E$ ) is denoted by $\bar{E}$. Since it is certain that $E$ either occurs or does not, and since $E$ and $\bar{E}$ are mutually exclusive, the addition rules says

$$
P(E)+P(\bar{E})=P(E \text { or } \bar{E})=1
$$

which we often use to find $P(E) \Longrightarrow P(E)=1-P(\bar{E})$.
$\left.{ }^{*}\right)$ More generally if $A$ and $E$ are any events, then first of all,

$$
A=(A \text { and } E) \text { or }(A \text { and } \bar{E})
$$

and second, the events $(A$ and $E)$ and $(A$ and $\bar{E})$ are mutually exclusive, so

$$
P(A)=P(A \text { and } E)+P(A \text { and } \bar{E}) .
$$

Combining this with the multiplication rule we have the useful formula

$$
P(A)=P(E) P(A \mid E)+P(\bar{E}) P(A \mid \bar{E})
$$

4. Bayes' rule. Suppose that we know $P(B \mid A)$, how can we find $P(A \mid B)$ ? This question arises in situations where the natural sequence of events is first $A$, then $B$. In these situations we often know (or think we know) the prior (unconditional) probability $P(A)$, as well as the conditional probabilities $P(B \mid A)$ and $P(B \mid \bar{A})$. If all of this is known, then

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P(\bar{A}) P(B \mid \bar{A})}
$$

Example. Suppose that a test for a certain dread disease (dd) has a probability of 0.02 of returning a false positive and a probability of 0.001 of returning a false negative. Furthermore, suppose that it is known that $1 \%$ of the population is infected with dd.

Question: If a random individual tests positive for dd, what is the probability that he or she is actually infected?

Answer: First, some notation. I'll use $D$ to denote the event that the individual is infected with dd and $T$ for the event that the individual tests positive for dd.
What we know is (i) $P(D)=0.01$ (probability that a randomly individual is infected), (ii) $P(T \mid \bar{D})=0.02$ (probability of a false positive) and (iii) $P(\bar{T} \mid D)=0.001$ (probability of a false negative). What we want to know is $P(D \mid T)$, and we can use Bayes' rule to find it.
First, $P(\bar{D})=1-P(D)=0.99$. Likewise

$$
P(T \mid D)=1-P(\bar{T} \mid D)=1-0.001=0.999
$$

(conditional probabilities behave exactly like unconditional probabilities).

Now we can simply plug everything into Bayes' formula

$$
\begin{aligned}
P(D \mid T) & =\frac{P(T \text { and } D)}{P(T)} \\
& =\frac{P(D) P(T \mid D)}{P(D) P(T \mid D)+P(\bar{D}) P(T \mid \bar{D})} \\
& =\frac{(0.01)(0.999)}{(0.01)(0.999)+(0.99)(0.02)}=\frac{0.00999}{0.02979} \approx 0.335 .
\end{aligned}
$$

Conclusion: Even though there is a very low probability of a false positive, a positive test result indicates an infected person in only about 1 out of 3 cases. This may appear contradictory at first, but you have to remember that a false positive is the conditional event "positive result given no infection" $(T \mid \bar{D})$, while the event whose probability we just calculated is "infection given positive test" $(D \mid T)$.
In this example the probability $P(D \mid T)$ is relatively low because of the prior probability $P(D)=0.01$. Most people are not infected, so even though very few of them test positive, almost two thirds of all positive results (in this hypothetical example) are false positives.


[^0]:    ${ }^{\text {a }}$ An instance of Laplace's principle of insufficient reason.

