Probability theory is the mathematical field concerned with *quantifying the likelihood* of uncertain events.

- The *probability of an event* is a number between 0 and 1.
- The closer the number is to 1, the more certain we are that the event will occur.
- The closer the number is to 0, the more certain we are that the event will *not* occur.
- Events whose probabilities are close to 1/2 are those about which we are the most *uncertain*.
- The probability of an event depends on what we know (or assume). As the information changes, so can the probability.

The *frequentist* definition

The probability of an event is the **relative frequency** with which the event will is observed if the same set of circumstances are repeated a large number of times. I.e., if the event E is observed k times in n repetitions, then the probability of E, denoted by P(E), is k/n.

The *classical* definition

If a process has n equally likely outcomes and the event E comprises k of these outcomes, then P(E) = k/n.

The frequentist and classical definitions are connected by... The *law of large numbers*

If P(E) is the (classical) probability of the event E, then as the number n of (independent) repetitions of the process grows large, the relative frequency with which E is observed gets closer and closer to P(E) (almost certainly).

Example.

Suppose that a fair coin is tossed three times. The (eight) possible outcomes are

HHH, HHT, HTH, THH, TTH, TTH, HTT, TTT

Unless we have information to the contrary, the only reasonable assumption is that these eight outcomes are equally likely.^a

If E is the event "exactly two H are observed in three tosses", then E is comprised of the outcomes HHT, HTH and THH, so

$$P(E) = \frac{\# \text{ of outcomes in } E}{\text{total } \# \text{ of outcomes}} = \frac{3}{8}.$$

The *law of large numbers* says in this case that if the process of tossing a coin three times is repeated a large number of times, then *it is almost certain that* the relative frequency of the event E (two H and one T) in this large number of repetitions *will be very close to* 3/8.

^aAn instance of Laplace's principle of insufficient reason.

Conditional probability

(*) The probability of an event depends on what we know (or assume). As the information changes, so can the probability.

(*) Suppose that E and F are two related events. The *conditional probability* of E given F, written P(E|F), is the probability of observing event E, assuming that event F has been observed.

(*) If we know that the event F has occurred, then the set of possible outcomes has changed to include *only those* which occur in F.

(*) If P(E|F) = P(E), i.e., if observing the event F does not change the probability of the event E, then we say that E and F are *statistically independent* (or just independent, for short).

Example. Returning to the three coin tosses, suppose that F is the event "The first coin flip results in H", and E is as before (2H and 1T). If we know that F has occurred, then the set of possible outcomes is reduced to HHH, HHT, HTH and HTT. Two of these four outcomes result in E, so

$$P(E|F) = \frac{\text{\# of outcomes in } E \text{ and in } F}{\text{\# of outcomes in } F} = \frac{2}{4} = \frac{1}{2}.$$

Similarly, if we know that E has occurred, then the conditional probability of F given E is

$$P(F|E) = \frac{\text{\# of outcomes in } E \text{ and in } F}{\% \text{ of outcomes in } E} = \frac{2}{3},$$

which is different (bigger) than the *unconditional* (or *prior*) probability of F,

$$P(F) = \frac{\# \text{ of outcomes in } F}{\text{total } \# \text{ of outcomes}} = \frac{4}{8} = \frac{1}{2}.$$

Looking at either case, we see that E and F are *dependent* (not *independent*).

Rules for calculating probabilities.

- 1. If the event E is certain **not** to occur, then P(E) = 0; if the event E is certain **to** occur, then P(E) = 1 and in any case $0 \le P(E) \le 1$.
- 2. The conditional probability of E given F is calculated as follows:

$$P(E|F) = \frac{P(E \text{ and } F)}{P(F)},$$

where "E and F" is the event where both E and F occur. Likewise,

$$P(E|F) = \frac{P(E \text{ and } F)}{P(E)}.$$

In many cases, the conditional probability is known, and we use the formula(s) above to find the probability of "E and F":

$$P(E \text{ and } F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$$

This is called the *multiplication rule*. In the special case where E and F are *independent*, the multiplication rule gives

$$P(E \text{ and } F) = P(E)P(F).$$

3. The probability of "E or F" is given by

P(E or F) = P(E) + P(F) - P(E and F).

This is called the *addition rule*.

(*) If P(E and F) = 0, the events E and F are called *mutually exclusive*.
If E and F are mutually exclusive, then the addition rule simplifies to

$$P(E \text{ or } F) = P(E) + P(F).$$

(*) The event "E does not occur" (called the complement of E) is denoted by E. Since it is certain that E either occurs or does not, and since E and E are mutually exclusive, the addition rules says

$$P(E) + P(\overline{E}) = P(E \text{ or } \overline{E}) = 1$$

which we often use to find $P(E) \implies P(E) = 1 - P(\overline{E})$.

*) More generally if A and E are any events, then first of all,

 $A = (A \text{ and } E) \text{ or } (A \text{ and } \overline{E})$

and second, the events (A and E) and $(A \text{ and } \overline{E})$ are mutually exclusive, so

$$P(A) = P(A \text{ and } E) + P(A \text{ and } \overline{E}).$$

Combining this with the multiplication rule we have the useful formula

$$P(A) = P(E)P(A|E) + P(\overline{E})P(A|\overline{E}).$$

4. **Bayes' rule.** Suppose that we know P(B|A), how can we find P(A|B)? This question arises in situations where the natural sequence of events is *first* A, *then* B. In these situations we often know (or think we know) the *prior* (unconditional) probability P(A), as well as the conditional probabilities P(B|A) and $P(B|\overline{A})$. If all of this is known, then

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$

Example. Suppose that a test for a certain dread disease (dd) has a probability of 0.02 of returning a *false positive* and a probability of 0.001 of returning a *false negative*. Furthermore, suppose that it is known that 1% of the population is infected with dd.

Question: If a random individual tests positive for dd, what is the probability that he or she is actually infected?

Answer: First, some notation. I'll use D to denote the event that the individual is infected with dd and T for the event that the individual tests positive for dd.

What we know is (i) P(D) = 0.01 (probability that a randomly individual is infected), (ii) $P(T|\overline{D}) = 0.02$ (probability of a false positive) and (iii) $P(\overline{T}|D) = 0.001$ (probability of a false negative). What we want to know is P(D|T), and we can use Bayes' rule to find it.

First, $P(\overline{D}) = 1 - P(D) = 0.99$. Likewise

$$P(T|D) = 1 - P(\overline{T}|D) = 1 - 0.001 = 0.999$$

(conditional probabilities behave exactly like unconditional probabilities).

Now we can simply plug everything into Bayes' formula

$$P(D|T) = \frac{P(T \text{ and } D)}{P(T)}$$

= $\frac{P(D)P(T|D)}{P(D)P(T|D) + P(\overline{D})P(T|\overline{D})}$
= $\frac{(0.01)(0.999)}{(0.01)(0.999) + (0.99)(0.02)} = \frac{0.00999}{0.02979} \approx 0.335.$

Conclusion: Even though there is a very low probability of a false positive, a positive test result indicates an infected person in only about 1 out of 3 cases. This may appear contradictory at first, but you have to remember that a false positive is the conditional event "positive result given no infection" $(T|\overline{D})$, while the event whose probability we just calculated is "infection given positive test" (D|T).

In this example the probability P(D|T) is relatively low because of the *prior* probability P(D) = 0.01. Most people are not infected, so even though very few of them test positive, almost two thirds of all positive results (in this hypothetical example) are false positives.